Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available March 1, 2026
-
Abstract This study integrated high‐throughput computational modeling with experimental validation to investigate rare earth (RE) phosphates as potential environmental barrier coatings (EBCs) for SiC‐based ceramic matrix composites (CMCs). Although RE silicates have been widely studied for EBC applications, they are prone to degradation due to water vapor corrosion and silica volatilization at high temperatures. RE phosphates, with their strong P–O bonds, offer a promising alternative with improved resistance to volatilization. Using the AFLOW computational framework, we performed density functional theory calculations to evaluate the thermomechanical properties of single‐component RE phosphates. Specifically, AFLOW Automatic Elasticity Library (AEL) was employed to predict mechanical properties, and AFLOW Automatic GIBBS Library (AGL) and AFLOW Quasiharmonic Approximation (QHA) were used to estimate thermal properties. Our results indicate that although the AGL method performs well in predicting thermal conductivity, it may not be suitable for screening the coefficient of thermal expansion of RE phosphates. Additionally, we explored the concept of configurational disorder in high‐entropy phosphates to enhance their thermal performance. Our experimental validation supported the computational findings, demonstrating that incorporating multiple RE elements into phosphates can significantly improve the performance of EBCs for SiC‐based CMCs.more » « lessFree, publicly-accessible full text available October 1, 2026
-
The increasing prevalence of smart devices spurs the development of emerging indoor localization technologies for supporting diverse personalized applications at home. Given marked drawbacks of popular chirp signal-based approaches, we aim at developing a novel device-free localization system via the continuous wave of the inaudible frequency. To achieve this goal, solutions are developed for fine-grained analyses, able to precisely locate moving human traces in the room-scale environment. In particular, a smart speaker is controlled to emit continuous waves at inaudible20kHz, with a co-located microphone array to record their Doppler reflections for localization. We first develop solutions to remove potential noises and then propose a novel idea by slicing signals into a set of narrowband signals, each of which is likely to include at most one body segment’s reflection. Different from previous studies, which take original signals themselves as the baseband, our solutions employ the Doppler frequency of a narrowband signal to estimate the velocity first and apply it to get the accurate baseband frequency, which permits a precise phase measurement after I-Q (i.e., in-phase and quadrature) decomposition. A signal model is then developed, able to formulate the phase with body segment’s velocity, range, and angle. We next develop novel solutions to estimate the motion state in each narrowband signal, cluster the motion states for different body segments corresponding to the same person, and locate the moving traces while mitigating multi-path effects. Our system is implemented with commodity devices in room environments for performance evaluation. The experimental results exhibit that our system can conduct effective localization for up to three persons in a room, with the average errors of 7.49cmfor a single person, with 24.06cmfor two persons, with 51.15cmfor three persons.more » « less
-
The cold sintering process (CSP) is a low-temperature consolidation method used to fabricate materials and their composites by applying transient solvents and external pressure. In this mechano-chemical process, the local dissolution, solvent evaporation, and supersaturation of the solute lead to “solution-precipitation” for consolidating various materials to nearly full densification, mimicking the natural pressure solution creep. Because of the low processing temperature (<300°C), it can bridge the temperature gap between ceramics, metals, and polymers for co-sintering composites. Therefore, CSP provides a promising strategy of interface engineering to readily integrate high-processing temperature ceramic materials (e.g., active electrode materials, ceramic solid-state electrolytes) as “grains” and low-melting-point additives (e.g., polymer binders, lithium salts, or solid-state polymer electrolytes) as “grain boundaries.” In this minireview, the mechanisms of geomimetics CSP and energy dissipations are discussed and compared to other sintering technologies. Specifically, the sintering dynamics and various sintering aids/conditions methods are reviewed to assist the low energy consumption processes. We also discuss the CSP-enabled consolidation and interface engineering for composite electrodes, composite solid-state electrolytes, and multi-component laminated structure battery devices for high-performance solid-state batteries. We then conclude the present review with a perspective on future opportunities and challenges.more » « less
An official website of the United States government
